Pierre Auger Observatory

The Pierre Auger, ANTARES, and IceCube Observatories team up for a search of neutrino emission from the binary neutron star merger GW170817

On August 17, 2017 the LIGO and Virgo collaboration measured a gravitational wave originating from a binary neutron star merger. Within 1.7 seconds, this event was followed by a gamma ray burst (GRB), recorded by the Fermi and INTEGRAL satellites, and subsequent electromagnetic observations in the optical and radio regimes. These observations made it possible for the first time to pinpoint the source location of a gravitational wave event. The source was found to be in a galaxy 130 million light years away, known as NGC 4993. According to model predictions such a system may also accelerate cosmic rays to extreme energies, and thus emit photons and neutrinos up to GeV to EeV energies.

Read more...

Press Release: 50 year-old mystery has been solved

Ever since the existence of cosmic rays with individual energies of several Joules was established in the 1960s, speculation has raged as to whether cosmic particles of mean energy of 2 Joules are created in our Milky Way or in distant extragalactic objects.

Read more...

Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory


Cosmic rays are mostly charged particles that  reach Earth from outer space. Although they were discovered more than a century ago, the origin of the ultra-high energy ones (with an energy above 1018 eV, or 100,000 times more energetic than the particles in the LHC beam, the most powerful particle accelerator on Earth) is still a puzzle. The large area of the Pierre Auger Observatory of about 3000 km2 compensates for the low flux of such particles and allows us to search for an excess/deficit of events arriving from different directions in the celestial sphere.

Read more...